Simulation of Internal Manifold-Type Molten Carbonate Fuel Cells (MCFCs) with Different Operating Conditions

نویسندگان

چکیده

Molten carbonate fuel cells (MCFCs) use molten as an electrolyte. MCFCs operate at high temperatures and have the advantage of using methane a because they can nickel-based catalysts. We analyzed performance internal manifold-type MCFC, according to operating conditions, computational fluid dynamics. Different conditions were used for external reforming-type MCFCs. Flow directions, gas utilization, The S/C ratio reforming area A simulation model was developed, considering transfer, reaction, heat transfer. results showed similar pressure drops in all flow directions. As utilization decreased, temperature but increased. improved with increasing temperatures. that more hydrogen produced increased accordingly. More However, obtained when contained same active area. compared under conditions. efficiency is higher than

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molten Carbonate Fuel Cells

Molten carbonate fuel cells use carbonate salts of alkali metals as electrolyte. Due to the highly corrosive nature of the electrolyte, various countermeasures are being developed. MCFCs are expected for high-efficiency power generation systems using hydrocarbon fuels, such as natural gas and coal gas. This article describes the mechanisms of operation and cell degradation, as well as the featu...

متن کامل

Nickel catalysts for internal reforming in molten carbonate fuel cells

Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In order to find suitable types of nickel catalysts and to obtain more knowledge about the deactivation ...

متن کامل

Molten Carbonate Fuel Cells for Electrolysis

The molten carbonate fuel cell (MCFC) has evolved to current megawatt-scale commercial power plants. When using the fuel cell for electrolysis (MCEC), it provides a promising option for producing fuel gases such as hydrogen, via water electrolysis, and syngas, via co-electrolysis of water and carbon dioxide. The molten carbonate cell can thereby operate reversibly as a dual energy converter for...

متن کامل

Molten Carbonate Fuel Cell Modelling

Hybrid plants where a fuel cell and a gas turbine are combined have attracted the attention of the power system community. In this paper, a model is provided of a Molten Carbonate Fuel Cell stack and of the thermo-hydraulic equipment in which it is embedded. The model is worked out from basic physical considerations; however, it is also simple enough for simulation and control purposes. Besides...

متن کامل

New Mathematical Modelling and Dynamic Simulation of a Molten Carbonate Fuel Cell

In this study, a more accurate model of fuel cell of molten carbonate was also used that was determined input and output control variables and investigated the behavior of the system with respect to those variables. A more complete kinetic is also implemented for increasing the effectiveness of the presented paper. The input variables include fuel flow rate of cell which is methane and cell vol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16062700